
Ananda KS  and J.V. Janhavi / Elixir Statistics 146 (2020) 54836-54843 54836 

1. Introduction 
 

1.1: Background 

Value at risk (VaR) is used widely in financial industry by 

all stake holders, like investors, portfolio managers, rating 

agencies and regulators. It indicates the maximum amount 

that an investor may loose over a given time horizon and with 

a given probability. It is commonly used, since it is easy to 

understand and it is reported as a single number that 

represents potential losses with some confidence level. There 

are several methods available in literature (Jorion, 2001) for 

estimating VaR and one among them is based on extreme 

value theory (McNeil, 1997). The field of extreme values has 

attracted the attention of Statisticians, Engineers, and 

Economists in the last few decades and there are two widely 

used approaches to analyze extreme data (Pickands, 1975; 

Galambos, 1981), namely, the block-maxima approach 

(Beirlant et al. 1996) and the peaks-over-threshold (PoT) 

approach (Davison and Smith, 1990). The first approach 

considers the distribution of the maximum order statistic, and 

the generalized extreme value distribution is then fitted to the 

series of extremal observations. But this approach does not 

consider all data points, as only one data point in each block 

is taken into account (Fisher and Tippett, 1928). The second 

approach extracts the peak values which exceed a certain 

threshold and in this method, the excess values over high 

threshold are modeled with generalized pareto distribution 

(GPD); McNeil and Saladin (1997).  

1.2: Generalized Pareto Distribution and Peaks over 

Threshold (PoT) framework  
 

Pickands (1975) and Balkemaand-de-Haan (1974) proved 

that the limiting distribution of exceedances (or peaks) of a 

random variable X over a sufficiently high threshold u is 

generalized Pareto distribution (GPD) with distribution 

function F(x) is given below 
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Where, location   (   ), scale   (   ) and shape 

parameter   (   ), for      the range of    is   
     , while for                
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distribution can be classified into three types depending on 

the shape parameter k; as heavy-tailed, medium-tailed and 

thin-tailed, according as k < 0, k = 0 and k > 0 respectively. 

Under PoT framework, we can estimate extremes for 

arbitrary distributions, if threshold value is sufficiently high. 

But the choice of threshold is critical, as high threshold leads 

to high variance due to few exceedences, but not biased, and 

a low threshold would necessitate using samples that are no 

longer considered as being in the tails which leads to 

increased bias. Hence one has to balance between bias and 

precision in selecting threshold value u. 
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ABSTRACT 

Value at Risk (VaR) is one of the most popular measures of risk associated with financial 

instruments. The generalized Pareto distribution (GPD) is useful in modeling values 

exceeding a high threshold in estimation of VaR and Expected Shortfall (ES). It has been 

observed that none of the existing methods for estimating parameters of GPD performs 

uniformly better than others (P. Z. Bermudez and S. Kotz, 2010), and even if one 

develops a method, it would suffer from heavy computational requirements. Recently, 

P.Chen et.al (2017) proposed a method of estimating parameters of GPD based on 

minimum distance approach and M-estimation. In literature survey it has been observed 

that a study on effect of outliers on estimation of parameters of GPD has not been carried 

out, though presence of outliers is common in financial data. In this regard this paper 

focuses on the effect of outliers on estimators of parameters of GPD, on estimators of 

VaR and estimators of ES under Peaks over Threshold (PoT) framework obtained from 

different methods. A simulation study is carried out to compare performances of five 

robust and seven non-robust methods for estimating parameters of GPD, VaR and ES in 

the presence of a single additive outlier under PoT set up and it is found that robust 

methods suggested by P.Chen et.al (2017) for estimating GPD parameters perform on par 

with other estimators when shape parameter k > 0 (for thin tailed distributions), in 

estimating VaR in presence of outlier, especially when sample size is moderately large.  
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In literature several threshold selection methods have been 

suggested; (Embrechts et al. 1999b).  

It is often seen that the number of exceedances is small in 

peaks-over-threshold approach and if there is an outlier, 

abnormally large value present in excedances, it may distort 

estimates. Hence, our objective of this study is to see the 

effect of outlier on various estimators and also to compare 

their performance in estimation of parameters of GPD, VaR 

and ES, through a simulation study using bias and root mean 

square error criterion in presence of outlier. So, for this 

purpose, in the next the section, we discuss various estimation 

procedures for parameters of GPD, estimation of VaR and ES 

under PoT framework.  In Section 3, using a simulation 

study, we evaluate performance of estimation methods for 

parameters of GPD, VaR and ES using bias and root mean 

square error criteria. Finally in Section 4, the summary of 

results of the simulation study is presented. 

2. Estimation Of Parameters Of Gpd, Value At Risk And 

Expected Shortfall 

2.1: Literature review: Estimation of parameters of GPD 

Several parameter estimation methods have been studied 

for generalized Pareto distribution in literature and various 

methods have been compared under different conditions for 

estimating the GPD parameters. However, there are no 

universally accepted methods for estimating GPD parameters. 

Even if few methods are better than others over certain range 

of shape parameter k, they suffer from various constraints and 

convergence problems (P.Z Bermudeza & S. Kotz 2010, Part 

I & II). Among these, maximum likelihood method (MLE) is 

preferred, due to its asymptotic optimality properties and has 

been studied by Davison (1984), Smith (1984, 1985), 

Grimshaw (1993). Hosking and Wallis (1987) compared 

maximum likelihood estimates with method of moments 

(MOM) and probability weighted moment (PWM) estimates 

over small ranges of k, |k|≤ ½ as it is common to observe k 

between -1 and ½ (Zhang and Stephen, 2009) and found that 

probability weighted method performs well for 0 ≤ k ≤ 1 and 

very good for k ≤ ½. Castillo and Hadi (1997) introduced 

elemental percentile method (EPM) and compared it with the 

MOM and the PWM methods, using root mean square error 

criterion when |k| ≤ 2, through simulation study and showed 

that the PWM estimator performs well in small samples for    

k ≤ ½. Zhang and Stephens (2009) and Zhang (2010) 

developed empirical Bayes method (EBM) based on the 

likelihood and which uses a data-driven prior to estimate 

parameters of GPD. They showed that EBM performs better 

than MLE, MOM, PWM and Likelihood Moment Estimator 

(LME) with respect to bias and mean square error when – ½ 

< k < ½.  

Luceño (2006) proposed estimators based on minimum 

distance approach by minimising the squared differences 

between empirical and model distribution functions, given in 

terms of various goodness- of-fit statistics, including the 

Cramer–von Mises statistic (CM), the Anderson– Darling 

statistic (AD) and the right-tail weighted Anderson– Darling 

statistic (ADR) and compared few maximum goodness-of-fit 

(MGF) estimators with Quasi  Maximum Likelihood (QML), 

MLE, MOM, PWM and EPM over k = -2, -1, 0, 1, 2. 

Recently P.Chen et. al (2017) proposed two new robust 

estimators for the GPD parameters using the minimum 

distance approach and M-estimation, where the Tuckey 

biweight function is used as the distance measure which 

minimizes the distance between the empirical distribution and 

the family of GPDs. They compared proposed methods with 

Maximum Likelihood (ML), the Elemental Percentile Method 

(EPM), and a method proposed by Zhang (2010) (EBM). 

They claim that as the distance measure is borrowed from 

robust estimation, the proposed methods are robust to outlier 

contamination and the breakdown point is as high as 50%. It 

is seen that many simulation studies for comparing different 

methods of estimation of GPD parameters, have been 

conducted by many authors but these simulation studies are 

somewhat difficult to compare, as they have been performed 

under different conditions. Moreover, some of the methods 

have never been compared via a simulation study. For more 

details refer Bermudeza & S. Kotz (2010) part I & II. 

As our objective is to study the effect of outliers on 

estimation of VaR, we consider comparison of some robust 

methods with some traditional methods available in literature 

through a simulation study. Hence, we considered five robust 

methods and seven non robust methods which are available in 

R-environment. Among these three robust method are based 

on minimum distance approach (PZ, WPZ, MGF)  
 

Table 1: List of estimation methods considered in the study 
 

Robust Methods Non Robust Methods 

1. Robust methods proposed 

P.Chen et.al (2017),            

(PZ and WPZ) 
 

2. Median Estimator, (MED),                          

Peng and Welsh, (2001) 
 

3. Minimum Density Power 

Divergence, (MDPD),  

Juárez and Schucany (2004) 
 

4. Maximum Goodness-of-fit 

Estimators, (MGF),  

(Based on Anderson 

Darling statistic)  

Alberto Luceño (2006)  

5. PICKANDS (Pickands) 

Pickands, J. (1975) 
 

6. Maximum Likelihood Estimator, 

(MLE), Smith (1984). 

7. Maximum Penalized 

Likelihood, (MPLE),  

Coles and Dixon (1999) 
 

8. Probability Weighted 

Moments,(PWMU, PWMB),  

    Hosking and Wallis (1987) 
 

9. Likelihood Moment Estimator, 

(LME), Zhang (2007) 

10. Empirical Bayes Method, 

(EBM or ZJ), Zhang (2010),  
 

2.2. Value at Risk and Expected Shortfall 

Generally returns on investments on a portfolio follow 

normal distribution and as a result, under typical conditions, 

VaR is thought to be almost as effective as expected shortfall 

(ES) in capturing risk. However, the financial crisis in 2007 

highlights the importance of measuring the risk associated 

with non-normal returns. In this connection we are using 

generalized Pareto distribution to model returns exceeding a 

sufficiently high threshold value, in case of violation of 

normality assumption and for heavy tailed distribution. The 

procedure is to estimate parameters of GPD and then use 

them for estimation of VaR and ES.  

Value at Risk (VaR) 
 

If X denotes the return random variable with distribution 

function   ( ), then for each     (   )  the VaR with               

100 (1– ) % confidence coefficient is defined as: 
 

   ( )( )     (   (   )   ) 

                     =     (   (   )   ) 
 

         (     )  then    ( )( ) under PoT 

framework is given by (Ref: Mc. Neil. A., 1998) 
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As value at risk is not a linear function of parameters of 

GPD, there is a need for studying estimation of VaR, 
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especially in the presence of outliers. The main drawback 

with the use of VaR as a risk measure is that, it does not 

respond to losses exceeding the confidence level, as a result it 

cannot capture the risk associated with the shape of the 

distribution beyond the confidence level. Artzner et al. (1997) 

propose the use of expected shortfall as an improvement on 

VaR. 
 

  ( )( )   (  |      ( )( ))
 

 

  ( )  
   ( )

   
 
    

   

 

 

This is expected value of return random variable beyond 

value at risk. So we consider comparison of twelve methods 

in estimating parameters of GPD, VaR and ES. As our main 

interest lies in effect of outlier, we consider comparisons of 

methods both in the absence and in the presence of a single 

outlier under PoT framework.   

Simulation Study  

3.1: Introduction  

In this section, the aim is to compare few robust methods 

with non-robust methods for estimating parameters of GPD, 

estimators of VaR and ES. Hence, a comprehensive 

simulation study is carried out to compare performance of the 

estimators as referred in Table 1, which includes recently 

proposed methods by P.Chen et. al (2017). In this study 

location parameter is set at 0 and scale parameter is set at 1, 

as simulation results are invariant of scale parameter 

(Hosking & Wallis, 1987). In practice the value of shape is 

commonly observed between -1 and ½ (Zhang and Stephens, 

2009) and also it is not uncommon to observe shape 

parameter k ≥ ½ (infinite variance) (Castillo et. al 2005), due 

to violation of normality assumption (heavy tailed 

distribution), therefore we restrict our attention to the case of 

shape (k) values between -1 and +1.  

In this study, bias and root mean square errors are 

computed in estimating VaR and ES using all methods 

considered in this study, at different confidence levels 

(    = 0.95, 0.98 and 0.99) under PoT setup. Under this 

setup the sizes of exceedances are usually small due to critical 

choice of threshold, therefore in order to have some 

exceedances, i.e., n = 20, 40 and 80, samples of 1,000 random 

observations are generated from GPD at p = 0.02, 0.04 and 

0.08 respectively.  

For each combination of sample size (n), shape (k) and 

confidence level (1 –  ), bias and root mean squared error of 

the estimators are obtained based on 10,000 Monte Carlo 

replications using R-software. 
 

      ( ̂   ) ;    
     √ *( ̂   )
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As a single abnormal large value may affect the precision 

of the estimators, performance of these methods are also 

compared after introducing a single additive outlier in 

estimating parameter of GPD, VaR and ES. 

3.2 Algorithm 

Step 1: Generated a random sample of size 1,000 

observations from GPD at location µ = 0, scale σ = 1 and 

shape = k 
 

Step 2: Select a threshold value u, taken to be (1 – p)
th

 sample 

quantile 
 

Step 3: Compute true Value at Risk (VaR) and true Expected 

Shortfall (ES) for fixed values of parameters of GPD, 

threshold u and confidence level (1- α) 
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Step 4: Compute mean, standard deviation of observations 

obtained in step 1 and replace a random observation by an 

additive outlier (mean+(5*StdDev)) to obtain contaminated 

data 

Step 5: Obtain observations above threshold u and generate 

exceedances (X – u)  

Step 6: Fit GPD for exceedances (for both non-contaminated 

and contaminated data) using all methods and estimate σ 

(scale), k (shape), VaR and ES. 

Step 7: Above steps from 1 to 6 are repeated 10,000 times 

and compute average bias and square root of average of 

squared error (RMSE) for scale, shape, VaR and ES for both 

contaminated and non-contaminated data. 

3.3: Results and findings 

It is observed that the performance of different methods in 

estimation of parameters of GPD depends on the sample size 

and the shape of the sampling distribution. Also we found 

that there is no one estimator, which stands out as being the 

best in all situations. Following are some of the general 

findings of the simulation study.  

 RMSE in estimation of VaR increases considerably with 

increase in confidence level (1 – α) for all methods.  

 Distribution of RMSE in estimation of VaR is found to be 

asymmetric over range of –1 < k < 1 for a given shape and 

confidence level for all methods.  

 Single additive outlier affected estimation of Value at Risk 

and Expected shortfall even when sample size is moderately 

large.  

Bias and root mean square error values in estimation of 

shape, VaR and ES are computed at 95%, 98% and 99% 

confidence levels. For space constraint, only RMSE values 

obtained at sample size n = 80 is reported in Table 2.1 to 

Table 4.2. However, graphs representing bias and RMSE 

values for estimating shape and VaR are reported for n = 20, 

40 and 80.   
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Detailed summary of simulation study in absence of outlier is 

given below  
 

Shape Parameter 
 

 PWM methods are consistent in estimating shape 

parameter, but however bias increases sharply when k > ½ 

and PWM underestimates shape over the range of -1<k< 1.  

 As sample size increases MPLE, LME & MDPD were 

performing on par with PWM method but RMSE of MDPD 

increases sharply, when k > ½, in estimating shape 

parameter. 
 

Scale Parameter 
 

  As sample size increases all methods were performing 

equally well in estimation of scale  

  Rate of change in RMSE for scale is more when k > 0, as 

compared to k < 0 for all estimators 
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Table 2.1. RMSE in estimating shape (without outlier) when n = 80 (p= 0.08, N = 1,000) at 95% confidence level. 

k -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ZJ 1.87 1.70 1.52 1.34 1.15 0.96 0.77 0.58 0.39 0.21 0.12 0.26 0.44 0.63 0.83 1.03 1.23 1.43 1.63 1.83 2.03 

PZ 1.95 1.76 1.56 1.36 1.16 0.97 0.77 0.58 0.41 0.25 0.20 0.31 0.48 0.67 0.86 1.05 1.25 1.45 1.65 1.85 2.05 

WPZ 1.95 1.75 1.54 1.34 1.14 0.94 0.74 0.55 0.36 0.21 0.20 0.34 0.53 0.72 0.92 1.12 1.32 1.52 1.73 1.93 2.14 

MLE 0.25 0.17 0.10 0.10 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 1.65 2.72 4.17 

PWMU 0.25 0.23 0.22 0.20 0.19 0.18 0.16 0.15 0.14 0.14 0.13 0.13 0.13 0.14 0.15 0.16 0.17 0.18 0.21 0.24 0.28 

PWMB 0.25 0.23 0.22 0.20 0.19 0.18 0.16 0.15 0.14 0.14 0.13 0.13 0.14 0.14 0.15 0.16 0.17 0.19 0.22 0.25 0.29 

PICK 0.40 0.40 0.40 0.39 0.39 0.39 0.40 0.40 0.40 0.40 0.41 0.41 0.42 0.43 0.43 0.44 0.45 0.46 0.47 0.47 0.48 

MED 0.19 0.20 0.20 0.19 0.20 0.21 0.21 0.23 0.24 0.25 0.27 0.29 0.31 0.33 0.35 0.38 0.40 0.42 0.44 0.45 0.47 

MDPD 0.25 0.15 0.08 0.09 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.16 0.17 0.20 0.82 1.50 2.92 3.73 4.69 

LME 1.04 0.95 0.86 0.78 0.70 0.61 0.52 0.39 0.17 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.21 0.22 0.23 

MPLE 0.25 0.17 0.11 0.11 0.13 0.12 0.12 0.12 0.12 0.12 0.13 0.14 0.14 0.15 0.16 0.17 0.19 0.21 0.25 0.30 0.36 

MGF 0.13 0.10 0.11 0.12 0.12 0.11 0.11 0.12 0.12 0.13 5.25 17.39 29.73 39.67 48.33 51.87 52.62 50.51 47.40 44.33 38.75 

 

Table 2.2. RMSE in estimating shape (with outlier) when n = 80 (p= 0.08, N = 1,000) at 95% confidence level. 

k -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ZJ 0.82 0.75 0.67 0.60 0.54 0.47 0.41 0.35 0.28 0.17 0.12 0.25 0.44 0.63 0.83 1.04 1.24 1.45 1.66 1.86 2.08 

PZ 1.05 0.96 0.88 0.80 0.72 0.65 0.57 0.47 0.36 0.24 0.21 0.33 0.50 0.69 0.89 1.09 1.29 1.49 1.69 1.90 2.11 

WPZ 1.05 0.96 0.88 0.80 0.70 0.54 0.46 0.39 0.30 0.19 0.21 0.36 0.54 0.74 0.94 1.14 1.35 1.56 1.77 1.98 2.19 

MLE 1.16 1.03 0.90 0.77 0.64 0.50 0.35 0.21 0.10 0.10 0.13 0.15 0.16 0.17 0.18 0.19 0.20 0.67 1.56 2.79 4.41 

PWMU 0.93 0.75 0.60 0.46 0.35 0.27 0.21 0.17 0.14 0.13 0.13 0.13 0.13 0.14 0.15 0.16 0.17 0.19 0.21 0.24 0.28 

PWMB 0.92 0.75 0.59 0.46 0.35 0.26 0.20 0.16 0.14 0.13 0.12 0.13 0.13 0.14 0.15 0.16 0.18 0.20 0.22 0.25 0.29 

PICK 0.40 0.40 0.40 0.39 0.39 0.40 0.40 0.40 0.40 0.39 0.41 0.41 0.42 0.43 0.43 0.44 0.45 0.46 0.47 0.48 0.49 

MED 0.91 0.80 0.69 0.57 0.46 0.36 0.27 0.23 0.23 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.43 0.44 0.46 0.47 

MDPD 1.03 0.92 0.81 0.70 0.58 0.45 0.32 0.20 0.11 0.11 0.13 0.14 0.16 0.17 0.18 0.27 0.86 1.58 2.85 3.35 4.63 

LME 1.07 0.94 0.82 0.70 0.60 0.52 0.41 0.27 0.12 0.11 0.12 0.13 0.15 0.16 0.17 0.18 0.20 0.21 0.23 0.24 0.25 

MPLE 1.15 1.03 0.90 0.77 0.63 0.49 0.35 0.21 0.10 0.09 0.12 0.14 0.15 0.16 0.17 0.17 0.19 0.21 0.24 0.29 0.35 

MGF 5.67 9.62 15.77 22.65 15.95 2.15 0.49 0.30 0.14 0.10 4.70 15.47 28.30 37.81 46.86 50.67 52.13 49.84 47.54 43.42 39.46 

 

Table 3.1. RMSE in estimating Value at Risk (without outlier) when n = 80 (p= 0.08, N = 1,000) at 95% confidence level. 

k -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ZJ 0.33 0.33 0.32 0.31 0.30 0.28 0.25 0.21 0.17 0.12 0.15 0.27 0.45 0.68 0.96 1.36 1.82 2.45 3.21 4.18 

PZ 0.33 0.32 0.32 0.31 0.29 0.27 0.25 0.21 0.17 0.12 0.17 0.30 0.48 0.71 1.01 1.40 1.88 2.52 3.30 4.28 

WPZ 0.33 0.33 0.32 0.31 0.30 0.28 0.25 0.22 0.18 0.13 0.14 0.25 0.42 0.63 0.90 1.27 1.70 2.29 3.00 3.90 

MLE 0.35 0.35 0.34 0.33 0.32 0.30 0.27 0.23 0.17 0.11 0.18 0.37 0.63 0.97 1.42 2.07 9.22 21.68 49.87 153.60 

PWMU 0.34 0.34 0.34 0.33 0.32 0.30 0.27 0.23 0.18 0.11 0.17 0.35 0.61 0.95 1.41 2.07 2.94 4.19 5.92 8.42 

PWMB 0.34 0.34 0.34 0.33 0.32 0.30 0.27 0.23 0.18 0.11 0.18 0.36 0.62 0.97 1.44 2.12 3.04 4.95 6.40 9.63 

PICK 0.35 0.34 0.34 0.33 0.32 0.30 0.27 0.24 0.18 0.12 0.18 0.36 0.62 0.96 1.41 2.03 2.83 3.95 5.36 7.31 

MED 0.34 0.34 0.34 0.33 0.32 0.30 0.27 0.24 0.18 0.12 0.18 0.36 0.62 0.97 1.43 2.05 2.86 3.99 5.43 7.38 

MDPD 0.35 0.35 0.34 0.33 0.32 0.30 0.27 0.23 0.18 0.11 0.18 0.36 0.62 0.96 3.51 25.95 40.13 76.80 285.50 473.11 

LME 0.36 0.36 0.36 0.35 0.35 0.33 0.31 0.28 0.20 0.11 0.18 0.36 0.62 0.97 1.42 2.05 2.87 3.98 5.43 7.36 

MPLE 0.35 0.35 0.34 0.33 0.32 0.30 0.27 0.23 0.17 0.11 0.19 0.38 0.65 1.01 1.49 2.31 7.51 43.88 134.91 487.78 

MGF 0.35 0.34 0.34 0.33 0.32 0.30 0.27 0.23 0.18 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
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Table  3.2. RMSE in estimating Value at Risk (with outlier) when n = 80 (p= 0.08, N = 1,000) at 95% confidence level. 

k -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

ZJ 0.36 0.36 0.36 0.35 0.34 0.33 0.30 0.25 0.19 0.12 0.16 0.29 0.48 0.71 1.01 1.40 1.87 2.50 3.26 4.21 

PZ 0.35 0.35 0.35 0.34 0.33 0.30 0.27 0.22 0.17 0.12 0.17 0.30 0.48 0.72 1.01 1.40 1.88 2.51 3.27 4.25 

WPZ 0.35 0.35 0.35 0.34 0.33 0.31 0.28 0.24 0.18 0.13 0.15 0.26 0.43 0.65 0.92 1.29 1.72 2.30 3.00 3.88 

MLE 0.35 0.36 0.35 0.35 0.34 0.32 0.29 0.25 0.18 0.10 0.20 0.39 0.66 1.01 1.48 2.13 3.22 8.20 12.08 34.77 

PWMU 0.35 0.35 0.34 0.34 0.32 0.30 0.27 0.23 0.18 0.11 0.18 0.37 0.64 0.99 1.47 2.16 3.09 9.02 6.35 9.45 

PWMB 0.35 0.35 0.34 0.34 0.32 0.30 0.27 0.23 0.18 0.11 0.19 0.38 0.65 1.01 1.51 2.22 3.20 27.97 7.02 12.57 

PICK 0.34 0.34 0.34 0.33 0.32 0.30 0.27 0.23 0.18 0.11 0.20 0.39 0.65 1.01 1.48 2.13 2.97 4.12 5.62 7.66 

MED 0.35 0.35 0.34 0.34 0.32 0.30 0.28 0.24 0.18 0.11 0.19 0.38 0.64 0.99 1.46 2.10 2.92 4.07 5.54 7.53 

MDPD 0.35 0.35 0.35 0.35 0.34 0.32 0.29 0.24 0.18 0.10 0.19 0.38 0.65 1.00 8.64 20.18 116.54 410.92 942.07 5572.07 

LME 0.35 0.35 0.35 0.35 0.34 0.32 0.30 0.25 0.18 0.11 0.19 0.38 0.65 1.01 1.47 2.13 2.96 4.11 5.60 7.58 

MPLE 0.35 0.36 0.35 0.35 0.34 0.32 0.29 0.25 0.18 0.10 0.21 0.40 0.68 1.06 1.55 3.47 11.12 2066.18 159.24 564.19 

MGF 296 97.63 25.46 11.60 4.72 1.45 0.31 0.26 0.19 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

 

Table 4.1. RMSE in estimating Expected Shortfall (without outlier) when n = 80 (p= 0.08, N = 1,000) at 95% confidence level. 

k -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

ZJ 152 12.9 2.03 0.41 0.32 0.30 0.31 0.33 0.33 0.36 0.49 0.58 0.71 0.86 1.04 1.26 1.57 2.78 9.11 

PZ 207 108 50.7 9.32 1.01 0.50 0.42 0.44 0.45 0.49 0.68 0.81 0.98 1.17 1.41 1.66 1.98 3.03 9.08 

WPZ 114 90.2 61.7 32.3 0.63 0.44 0.39 0.41 0.42 0.44 0.54 0.62 0.73 0.86 1.04 1.30 1.72 3.16 9.70 

MLE 0.64 0.66 0.68 0.68 0.69 0.68 0.65 0.59 0.48 0.31 0.55 1.32 2.67 5.44 24.87 196.10 1185.7 3923.43 5564.92 

PWMU 0.63 0.65 0.67 0.68 0.69 0.68 0.65 0.59 0.48 0.31 0.55 1.31 2.57 4.73 8.80 19.89 45.27 5281.53 421.82 

PWMB 0.63 0.65 0.67 0.68 0.69 0.68 0.65 0.59 0.48 0.31 0.55 1.30 2.57 4.72 8.79 19.87 45.23 5277.10 421.47 

PICK 0.63 0.65 0.67 0.68 0.69 0.67 0.67 0.63 0.94 1.04 15.7 74.2 383.8 351.90 1022.46 16102 1928.9 1810.31 22179.14 

MED 0.63 0.65 0.67 0.68 0.68 0.67 0.64 0.59 4.80 2.21 8.09 30.3 300.6 157.29 8084.34 2496 2416.6 28000.47 4581.05 

MDPD 0.64 0.66 0.68 0.68 0.69 0.68 0.65 0.59 0.48 0.31 0.56 1.36 2.82 36.48 171.90 496.30 5982.5 48437.22 30657780 

LME 0.63 0.65 0.66 0.67 0.67 0.65 0.62 0.56 0.47 0.31 0.55 1.33 2.67 5.63 16.54 297.96 744.34 5681.67 6129.42 

MPLE 0.64 0.66 0.68 0.68 0.69 0.68 0.65 0.59 0.48 0.31 0.53 1.26 2.44 4.29 7.15 12.45 50.43 12860.79 958.83 

MGF 0.63 0.65 0.67 0.68 0.69 0.68 0.65 0.59 0.48 0.30 NaN NaN NaN NaN NaN NaN NaN NaN NaN 

 

Table 4.2. RMSE in estimating Expected Shortfall (with outlier) when n = 80 (p= 0.08, N = 1,000) at 95% confidence level. 

k -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

ZJ 0.64 0.66 0.68 0.69 0.68 0.66 0.61 0.50 0.36 0.32 0.52 0.63 0.77 0.93 1.12 1.35 1.64 2.82 9.14 

PZ 0.64 0.62 0.62 0.61 0.59 0.53 0.44 0.36 0.38 0.47 0.67 0.79 0.96 1.13 1.36 1.59 1.93 3.06 9.22 

WPZ 0.64 0.62 0.62 0.62 0.60 0.60 0.54 0.45 0.39 0.42 0.55 0.63 0.75 0.89 1.07 1.33 1.75 3.22 9.80 

MLE 0.61 0.63 0.65 0.65 0.65 0.64 0.61 0.55 0.45 0.28 0.60 1.40 2.84 6.44 43.47 665.97 5.07E+10 8.76E+18 1.41E+16 

PWMU 0.61 0.63 0.65 0.66 0.66 0.65 0.62 0.55 0.45 0.28 0.60 1.38 2.68 4.92 9.28 21.72 50.52 6044.23 481.24 

PWMB 0.61 0.63 0.65 0.66 0.66 0.65 0.62 0.56 0.45 0.28 0.60 1.37 2.67 4.92 9.27 21.70 50.48 6039.22 480.84 

PICK 0.63 0.65 0.67 0.68 0.68 0.67 0.64 0.66 1.70 2.18 16.24 73.44 99.74 263 773 2164 1683 1690 1892 

MED 0.61 0.63 0.64 0.64 0.64 0.63 0.61 0.54 1.20 2.11 8.73 28.51 91.23 389 5319 810 2394 1698 20742 

MDPD 0.62 0.64 0.65 0.66 0.66 0.64 0.61 0.55 0.44 0.27 0.62 1.45 3.17 10.10 183.13 3.60E+08 2.95E+11 2.54E+32 1.19E+14 

LME 0.61 0.63 0.64 0.65 0.65 0.64 0.61 0.55 0.44 0.28 0.61 1.41 2.83 6.11 73.45 139.85 2410.42 22290.93 5552.61 

MPLE 0.61 0.63 0.65 0.65 0.66 0.64 0.61 0.55 0.45 0.28 0.58 1.34 2.56 4.50 7.56 26.56 89.03 15734.80 1194.04 
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Value at Risk 
 

 RMSE in estimating VaR is increasing as confidence level 

(1 – α) increases for all sample sizes. 

 When sample size is small (n = 20, 40) all methods 

overestimates VaR, when  k < 0, and underestimates VaR 

when k > 0.  

 But as sample size increases (n=80), all methods 

underestimates VaR when   k < 0, and overestimates VaR 

when k > 0. 

 RMSE in estimating VaR for all methods increases 

rapidly when k > 0.2. 

 Robust methods PZ and WPZ methods based on minimum 

distance and M-estimation are performing well in 

estimation of VaR, when k ≤ 0.2 and k > 0.1 respectively 

for large sample size (n=80).  
 

Expected Shortfall 
 

 As sample size increases PZ, WPZ and EBM methods are 

performing equally well in estimating expected shortfall  

 But however, EBM is better than others in estimating ES 

based on RMSE when -0.7 < k < 0 for large sample size. 

(n=80) 
 

We finally conclude that no estimators are performing better 

than others in estimating shape, VaR and ES over the range of 

-1 < k < 1 in absence of outlier.  

3.4  Summary of simulation study 
 

Table 5. Estimators of shape parameter based on 

minimum root mean square error in this simulation study  

 

Sample size Non Contaminated Contaminated 

n=20 

MDPD (-1 < k < -0.5),  

LME (-0.2 < k < 0.1),  

PWMU (0.1 < k <1) 

ZJ (-1 < k <-0.2),  

LME (-0.2 < k <0.1),  

PWMU (0.1 < k <1) 

n = 40 

MGF(-0.5 < k < -0.1),  

LME(k = -0.1, 0),  

PWMU (0.1 < k <1) 

ZJ(-0.9 < k < -0.4),  

LME(k= -0.1),  

PWMU (0 < k <1) 

n = 80 

MGF(-0.6 < k < -0.2), 

LME(k = -0.1),  

ZJ(k=0),  

PWMU (0.1 < k < 0.7),  

LME(0.8< k <1) 

Pick (-1< k < -0.7),  

PWMB(-0.6< k < -0.3),  

MPLE (k=-0.2,-0.1), 

LME(k=0),  

PWMU(0< k <1) 

 

Table 6. Estimators of VaR at 95% based on minimum 

root mean square error in this simulation study  

Sample size Non Contaminated  Contaminated 

n=20 

PICKANDS (k ≤ - 0.6) 

MPLE (-0.5 ≤ k ≤ -0.2) 

PZ (k = -0.1) 

ZJ(0< k ≤ 0.3) 

PWMU (k=0.4, 0.5) 

LME (k ≥ 0.6) 

 

MGF (k ≤ - 0.4) 

MED (k = -0.3) 

MPLE (k = -0.2) 

LME (k = -0.1) 

ZJ(0< k ≤ 0.3) 

PWMU (k=0.4) 

LME (k ≥ 0.5) 

n = 40 

PICKANDS (k ≤ - 0.8) 

MGF (k = - 0.7) 

MPLE (k = -0.6) 

MLE (-0.5 ≤k < -0.2) 

MPLE (k = - 0.1) 

WPZ (k > 0) 

PICKANDS (k < - 0.2) 

MPLE (k = - 0.1) 

WPZ (k > 0) 

n=80 

PZ (k ≤ 0.2) 

MLE (k = -0.1) 

WPZ(k > 0) 

PICKANDS (k <  -0.4) 

PZ (k = -0.3, -0.1) 

MPLE (k= - 0.1) 

WPZ (k > 0) 

Table 7. Estimators of ES at 95% based on minimum root 

mean square error in this simulation study  

 

Sample size Non Contaminated  Contaminated 

n=20 

PICKANDS (k =-1,-0.9)  

PWM (-0.9 ≤ k ≤ -0.6) 

MLE (k = -0.5,-0.4,-0.3) 

LME (k =-0.2,-0.1) 

PWM (k= 0.1)  

ZJ(0.2 ≤ k ≤ 0.9) 

PICKANDS (-1 ≤ k ≤ -0.8) 

ZJ (-0.7 ≤ k ≤ -0.3) 

LME (k =-0.2,-0.1) 

PWMU (k= 0.1)  

ZJ(0.2≤ k ≤ 0.9) 

n = 40 

PWM (-1 ≤ k ≤ -0.7) 

ZJ (k=-0.6) 

LME (k=-0.5) 

ZJ(k=-0.4,-0.3,-0.2) 

LME (k=-0.1) 

MPLE (k=0.1) 

WPZ (0.2 ≤ k ≤ 0.9) 

ZJ (k=1)                

PWM (-1 ≤ k ≤ -0.4) 

PZ (k=-0.3) 

MGF (k=-0.2,-0.1) 

MPLE (k=0.1) 

WPZ (0.2 ≤ k ≤ 0.9) 

ZJ (k=1)                

n=80 

PWM(k = -1, -0.9) 

LME (k=-0.8) 

ZJ (-0.7 ≤ k ≤ -0.2) 

MGF(k=-0.1) 

ZJ (0.1 ≤ k ≤ 0.8) 

PZ (k = 0.9) 

PWM(k = -1) 

PZ (-0.9 ≤ k ≤ -0.3) 

ZJ (k=-0.2) 

MDPD(k=-0.1) 

ZJ (k=0.1,0.2) 

WPZ (0.3 ≤ k ≤ 0.6) 

ZJ (0.7 ≤ k ≤ 0.9) 

Following are the observations from above table 

 It is clear that estimators that perform well for VaR are 

different from those of shape parameter, which is evident 

due to nonlinear relationship between VaR and shape 

parameter 

 It is also observed that WPZ method was performing better 

than all methods, in estimation of value at risk when k > 0, 

for sufficiently large sample size, in both the cases. 

 WPZ, PZ and EBM methods are performing equally well in 

estimating ES under following cases when i) k > 0 and n = 

40 and ii) -1 < k < 1 and n = 80.  

 EBM (ZJ) among them is performing better than PZ and 

WPZ when -0.7 < k < - 0.2 in absence of outlier when n = 

80. And WPZ, PZ and EBM are performing better than 

others in estimating ES when k > 0 for both datasets at n = 

80. 

Following graphs are reported below to facilitate comparison 

of effects of introducing single additive outlier in estimation 

of Value at Risk for negative and positive values of shape 

parameter separately at n=80. 
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From above plots we observed that PZ and WPZ are 

performing better than others in estimating VaR in absence of 

outlier, but for contaminated data robust methods PZ and 

WPZ were not performing well, even when sample size is 

large (n=80) for k < 0. Surprisingly for k > 0, these robust 

methods are performing better than others in presence of 

outlier when sample is large (n=80) when k > 0. 

3. Concluding Remarks   
 

The main objective of this study is to investigate the 

performances of some estimators of parameters of GPD, 

Value at Risk and Expected Shortfall under PoT framework 

in the presence of an outlier when sample size is small and 

moderately large. With this aim, some widely used GPD 

estimators referred in Table-1 are compared using bias and 

root mean square error criteria and VaR and ES so obtained 

from these estimators are also compared under same criterion. 

We observe that all methods considered in simulation study 

are affected by the presence of single additive outlier and 

further it is found that PWM based methods are consistent in 

estimating shape parameter when sample size is small (n=20) 

which supports finding reported in Hosking and Wallis (1987) 

and Castillo and Hadi (1997), and in absence of outlier, we 

observe that no estimator is performing better than others in 

estimating shape parameter over the range of -1 < k < 1. We 

also notice that estimators of VaR and ES are affected more 

by the presence outliers as compared to effect on GPD 

estimators. 

We note that robust method WPZ having least root mean 

square error in estimation of VaR among all estimators for           

k > 0 in presence and absence of outliers when sample size is 

moderately large. Also in estimation of ES, EBM (ZJ) 

estimator is having minimum root mean square error for most 

of the values of k in the range -1 to 1 as compared to that of 

other estimators in absence and in presence of outlier when 

sample size is moderately large. Hence, based on this study, 

we conclude that one can use robust method WPZ for 

estimating Value at Risk (extreme quantiles) and ZJ method 

for estimating ES without looking for outliers when the size 

of exceedances is large under peaks over threshold 

framework. We believe that above findings and conclusion 

facilitate investors/practitioners in selecting appropriate 

method in calculating risk measures wherever outliers are 

likely to occur.   
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