53272

S.N. Leena Nelson /Elixir Appl. Math. 131 (2019) 53272-53275

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 131 (2019) 53272-53275

Common Fixed Point Theorems for Four Mappings in Complete 2-Banach

Space

S.N. Leena Nelson Assistant Professor, Department of Mathematics Women's Christian College, Nagercoil, Kanyakumari District, (T.N.), India – 629 001.

ARTICLE INFO Article history: Received: 19 February 2019; Received in revised form: 6June 2019; Accepted: 17June 2019;	ABSTRACT This paper deals with few fixed point theorem for four mappings and some results on 2- Banach space.
	© 2019 Elixir All rights reserved.
Keywords 2-Banach Space, Self Mapping, Weakly Compatible, Fixed Point	

Introduction

Complete Banach Space.

In 1976 Iseki [1] introduced some fixed point theorems in Banach space. In 1993, Khan introduced involutions with fixed points in 2-Banach space. In the present paper I establish some common fixed point results for four mappings in 2-Banach space which mainly generalize the results of Amalendu Choudhury and T. Som and V.H. Badsha, Rekha Jain and saurabh Jain.

Preliminary definitions and results:

Let X be a linear space and ||.,.|| be a real valued function defined on X satisfying the following conditions:

(i) ||x, y|| = 0 if and only if x and y are linearly dependent.

(ii)
$$\|\mathbf{x}, \mathbf{y}\| = \|\mathbf{y}, \mathbf{x}\|$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbf{X}$

(iii) $||x, y + z|| \le ||x, y|| + ||x, z||$ for all $x, y, z \in X$

 $\|.,.\|$ is called a 2-norm and the pair $(X, \|.,.\|)$ is called a linear 2-normed space.

Basic properties of the 2-norms are that they are non-negative and $||x, y + ax|| = ||x, y|| \forall x, y \in X$ and all real number a.

A sequence $\{x_n\}$ in a linear 2-normed space $(X, \|., \|)$ is called a cauchy sequence if $\lim_{m,n\to\infty} \|x_m - x_n y\| = \mathbf{0} \forall y \text{ in } X$.

A sequence $\{x_n\}$ is a linear 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be convergent to a point x in X if $\lim_{m\to\infty} ||x_m - x, y|| = 1$

0 ∀*yinX*.

A linear 2-normed space $(X, \|, \|)$ in which every Cauchy sequence is convergent is called a 2-Banach space.

Let X be a 2-Banach space and T be a self mapping of X. T is said to be continuous at x if for any sequence $\{x_n\}$ in X with

$$x_n \to x$$
 then $Tx_n \to Tx_n$

Let X be a 2-Banach space. T and S are said to be weakly compatible if they commute at their coincidence points. i.e.,

 $Tx = Sx \text{ for some } x \in X \Rightarrow TSx = STx.$

53273 Main Results:

Let X be complete 2-normed linear space such that 2-norm satisfies the α -property with $\alpha > 0$. Let A,B,S and T be self mappings of X satisfying the following conditions:

(i) $A(x) \subseteq T(X), B(X) \subseteq S(X)$ and T(X) or S(X) is a closed subset of X.

(ii) *The* pairs (A,S) and (B,T) are weakly compatible.

For all^{x,y \epsilon X,}
$$\|Ax, By\| \le k_1[(\|Sx, Ty\| \cdot \|Ax, Sx\| \cdot \|By, Ty\|)] + k_2[(\|Sx, Ty\| \cdot \frac{\|Sx, By\| + \|Ax, Ty\|}{2})]$$

 $\|By, Ty\|$ where $k_1, k_2 > 0$ and $0 < (k_1 + k_2) < 1$ the A,B,S and T have a unique common fixed point in X.

Proof:

Let x_0 be an arbitrary point in X. By (i) we can define inductively a sequence $\{y_n\}$ in X such that $y_{2n} = Ax_{2n} = Tx_{2n+1}$ and $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$ for n=0,1,2,...

We claim that the sequence $\{y_n\}$ is a Cauchy sequence

$$||y_{2n}, y_{2n+1}|| = ||Ax_{2n}, Bx_{2n+1}||$$

$$\leq k_1[(||Sx_{2n}, Tx_{2n}|| \cdot ||Ax_{2n}, Sx_{2n}||) \cdot ||Bx_{2n+1}, Tx_{2n+1}||]^+$$

$$k_2\left[\left(||Sx_{2n}, Tx_{2n+1}|| \cdot \frac{||Sx_{2n}, Bx_{2n+1}|| + ||Ax_{2n}, Tx_{2n+1}||}{2} \cdot ||Bx_{2n+1}, Tx_{2n+1}||\right)\right]$$

$$\leq k_1[(||y_{2n-1}, y_{1n}|| \cdot ||y_{2n}, y_{2n-1}||) \cdot ||y_{2n+1}, y_{2n}||]$$

$${}^+k_2\left[\left(||y_{2n-1}, y_{2n}|| \cdot \frac{||y_{2n-1}, y_{2n+1}|| + ||y_{2n}, y_{2n-1}||}{2} \cdot ||y_{2n+1}, y_{2n}||\right)\right]$$

Let $d_n = ||y_n, y_{n+1}||$

$$\therefore d_{2n} \le k_1 [(d_{2n-1} \cdot d_{2n-1}) \cdot d_{2n}] + k_2 \left[\left(d_{2n-1} \cdot \frac{d_{2n-1} + d_{2n-1}}{2} \right) \cdot d_{2n} \right] \\ \le \alpha k_1 max \{ d_{2n-1}, d_{2n-1}, d_{2n} \} + \alpha k_2 max \{ d_{2n-1}, d_{2n-1}, d_{2n} \}$$

Suppose $d_{2n} > d_{2n-1}$

 $d_{2n} \leq \alpha k_1 d_{2n} + k_2 \alpha d_{2n} = (k_1 + k_2) \alpha d_{2n}$ which is a contradiction.

Hence,
$$d_{2n-1} > d_{2n} \Rightarrow d_{2n} \le d_{2n-1}$$

Similarly, $d_{2n+1} \le d_{2n}$

 $\therefore d_n \leq d_{n-1}$ for n = 1, 2, ...

Using above, $d_n \leq \alpha(k_1 + k_2)d_{n-1} = kd_{n-1}$, where $\alpha(k_1 + k_2) = k < 1$ $\therefore d_n \leq kd_{n-1} \leq k \cdot kd_{n-2} \leq \cdots \leq k \cdot k \cdot \ldots \cdot kd_0$ (ntimes) $\therefore d_n \leq kd_{n-1} \leq k^2d_{n-2} \leq \cdots \leq k^nd_0$

That is,

$$\|y_{n}, y_{n+1}\| \le k^{n} \|y_{0}, y_{1}\| \to 0 \text{ asn } \to \infty$$

If $m > n$, $\|y_{n}, y_{m}\| \le \|y_{n}, y_{n+1}\| + \|y_{n+1}, y_{n+2}\| + \dots + \|y_{m-1}, y_{m}\|$

53274

$$53274 \qquad S.N. Leena Nelson / Elixir Appl. Math. 131 (2019) 53272-53275 \\
\leq k^{n} ||y_{0}, y_{1}|| + k^{n+1} ||y_{0}, y_{1}|| + ... + k^{m-1} ||y_{0}, y_{1}|| = (k^{n} + k^{n+1} + ... + k^{m-1}) ||y_{0}, y_{1}|| \\
= \frac{k^{n}}{1-k} ||y_{0}, y_{1}|| \to 0 \text{ asm, } n \to \infty$$

It follows that $\{y_n\}$ is a Cauchy sequence and by the completeness of X, $\{y_n\}$ converges to $y \in X$.

$$\therefore \lim_{n \to \infty} y_n = \lim_{n \to \infty} Ax_{2n} = \lim_{n \to \infty} Bx_{2n+1} = \lim_{n \to \infty} Sx_{2n+1} = \lim_{n \to \infty} Tx_{2n+1} = y_n$$

Assume that T(X) is a closed subset of X.

Then there exists $v \in X$ such that Tv = y.

If $Bv \neq y$, then by using (iii), we obtain $||As_{2n}, Bv|| \leq k_1[(||Sx_{2n}, Tv|| \cdot ||Ax_{2n}, Sx_{2n}||) \cdot ||B_v, Tv||] + k_2\left[\left(||Sx_{2n}, Tv|| \cdot \frac{||Sx_{2n}, Bv|| + ||Ax_{2n}, Tv||}{2}\right) \cdot ||Bv, Tv||\right]$

As $n \to \infty$, we get

$$||y, Bv|| \le k_1[||y, Tv|| \cdot ||y, y|| \cdot ||Bv, Tv||] + k_2\left[\left(||y, Tv|| \cdot \frac{||y, Bv|| + ||y, Tv||}{2}\right) \cdot ||Bv, Tv||\right]$$

< $(k_1 + k_2)\alpha ||Bv, y||$

It follows that Bv = y = Tv.

Since B and T are weakly compatible, we have BTv = TBv and so By = Ty. If $y \neq By$ by (iii) we get

$$\|Ax_{2n}, B_{y}\| \leq k_{1}[(\|Sx_{2n}, Ty\| \cdot \|Ax_{2n}, Sx_{2n}\|) \cdot \|By, Ty\|]^{+}$$

$$k_{2}\left[\left(\|Sx_{2n}, Ty\| \cdot \frac{\|Sx_{2n}, By\| + \|Ax_{2n}, Ty\|}{2}\right) \cdot \|By, Ty\|\right]$$

As limit $n \rightarrow \infty$,

$$\|y, By\| \le k_1[\|y, Ty\| \cdot \|y, y\| \cdot \|By, Ty\|] + k_2\left[\left(\|y, Ty\| \cdot \frac{\|y, By\| + \|y, Ty\|}{2}\right) \cdot \|By, Ty\|\right]$$
$$\le k_1 \alpha max\{\|y, Ty\|, \|y, y\|, \|By, Ty\|\} + k_2 \alpha max\left\{\|y, Ty\|, \frac{\|y, By\| + \|y, Ty\|}{2}, \|By, Ty\|\right\} < \|y, By\|$$

and so By = y.

Since, $B(X) \subseteq S(X)$, there exists $w \in X$ such that Sw = y.

If $Aw \neq y$ by (iii) we have,

$$\begin{aligned} \|Aw, By\| &\leq k_1 [(\|Sw, Ty\| \cdot \|Aw, Sw\|) \cdot \|By, Ty\|] \\ &+ k_2 \left[\left(\|Sw, Ty\| \cdot \frac{\|Sw, By\| + \|Aw, Ty\|}{2} \right) + \|By, Ty\| \right] \\ &\therefore \|Aw, y\| \leq k_1 [(\|Sw, y\| \cdot \|Aw, Sw\|) \cdot \|y, y\|] + k_2 \left[\left(\|Sw, y\| \cdot \frac{\|Sw, y\| + \|Aw, y\|}{2} \right) + \|y, y\| \right] \\ &\leq k_1 \alpha max \{ \|Sw, y\|, \|Aw, Sw\|, \|y, y\| \} + k_2 \alpha max \left\{ \|Sw, y\|, \frac{\|Sw, y\| + \|Aw, y\|}{2}, \|y, y\| \right\} < \|Aw, y\| \end{aligned}$$

This implies that Aw = y.

Hence, Aw = Sw = y.

Since A and S are weakly compatible, ASw = SAw and so, if $Ay \neq By$ they by (iii) we get

$$\begin{split} \|Ay, y\| &= \|Ay, By\| \\ &\leq k_1 [(\|Sy, Ty\| \cdot \|Ay, Sy\|) \cdot \|By, Ty\|] \\ &+ k_2 \left[\left(\|Sy, Ty\| \cdot \frac{\|Sy, By\| + \|Ay, Ty\|}{2} \right) \cdot \|By, Ty\| \right] \\ &\leq k_1 \alpha max \{ \|Sy, y\|, \|Ay, Sy\|, \|y, y\| \} + k_2 \alpha max \left\{ \|Sy, y\|, \frac{\|Sy, y\| + \|Ay, y\|}{2}, \|y, y\| \right\} \\ &< \|Ay, y\| \\ &\leq \|Ay, y\| \\ \end{split}$$
Hence, $\|Ay, y\| < \|Ay, y\|$ and so $Ay = y$.

Thus Ay = Sy = By = Ty = y.

That is, y is a common fixed point for A, B, S and T.

The proof is similar when S(X) is assumed to be a closed subset of X.

References

1. Iseki K (1976): Fixed Point theorems in Banach Spaces, Math. Sem. Notes, Kobe Univ. pp. 211-213.

2. Khan M.S., Khan M.D. (1993): Involutions with fixed points in 2- Banach Spaces, Int. J. Math & Math.Sci. 16, pp. 429-34.

3. Thoades B.E. (1979): Contraction type mappings on a 2-metric space, Math. Nachr. 91 pp. 151-155.

4. Som T (2005) : Some fixed point results in 2-Banach space, International Jour. Math. Sci. 4(2), pp. 323-328.

5. V.H. Badshah, Rekha Jain and Saurabh Jain: Common fixed point theorem for four mappings in Complete spaces, Journal of Indian Acad. Math Vol. 33, No.1(2011) pp.97-103.

6. Amalendu Choudhury and T. Som: 2-Banach space and some fixed point results, Journal of Indian Acad. Math. Vol. 33, No.2(2011) pp. 411-418.

53275