

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 131 (2019) 53284-53286

Prime labeling of Complete Tripartite Graphs $K_{2,m,n}$ and $K_{3,m,n}$.

D.M.T.B. Dissanayake and A.A.I. Perera

Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka.

ARTICLE INFO
Article history:
Received: 30 May 2019;
Received in revised form:
16 June 2019;
Accepted: 22 June 2019;

Complete Tripartite Graphs,

ABSTRACT

Let *G* be a graph with *n* vertices. Prime labeling of *G* is the labeling of the vertices using first *n* positive integers such that labeling of each pair of adjacent vertices are relatively prime. This work is a generalization of [2] which was analogous to [1] in which prime labeling for complete bipartite graphs were considered. In [2] conditions for the existence of prime labeling of complete tripartite graphs of the form $K_{1,m,n}$ was given where $m, n \in \mathbb{Z}^+$. In our work, we have proved that prime labeling of $K_{2,m,n}$ and $K_{3,m,n}$ exists for some values of *m* and *n* where $m, n \in \mathbb{Z}^+$. Further, few non-existance cases have been discussed.

© 2019 Elixir All rights reserved.

Introduction

Keywords

Prime Labelling.

Graph labeling is one of the active research areas in Graph Theory. Much research can be found in different types of graph labeling. A recent survey on Graph labeling can be found in [3]. The notion of prime labeling was introduced by Roger Entringer in 1980's and was discussed in [5]. Present work on graph labeling is focused on complete bipartite graphs. In our work, which is a generalization of [2], prime labeling for tripartite graph $K_{2,m,n}$ and $K_{3,m,n}$, where $m, n \in \mathbb{Z}^+$ were considered. Some useful definitions to study this work are given below.

Definition 1. A simple graph is *tripartite* if its vertices can be partitioned into three disjoint subsets in such a way that no edge joins two vertices in the same set. Tripartite graph is *complete tripartite* if each vertex in one partite set is adjacent to all the vertices in the other two sets. If the three partite sets have cardinalities l, m and n, then the resulting complete tripartite graph is

$K_{l,m,n}$

Definition 2. Let G = G(V(G), E(G)) be a graph where V(G) and E(G) respectively denote the vertex set and the edge set of G. Then, a bijective map $\varphi: V(G) \to \{1, 2, 3, ..., |V(G)|\}$ is called a *prime labeling* if for each edge uv in E(G), vertex labeling of $\varphi(u)$ and $\varphi(v)$ are relatively prime. A graph which admits prime labeling is known as a prime graph.

Methodology

Here, two Theorems have been proved giving for the existence of prime labeling of graphs of the form $K_{2,m,n}$ and $K_{3,m,n}$. As stated in [1], let P(t, v) be the set of all primes x such that $t < x \le v$.

Theorem 1

(i) Let m, n be positive integers. Then, $K_{2,m,n}$ has prime labeling if and only if

$$2+m \le \left| P\left(\frac{2+m+n}{2}, 2+m+n\right) \right| + 1 \quad \text{where} \quad P\left(\frac{2+m+n}{2}, 2+m+n\right) \text{ denotes the set of all primes } p \text{ such that} \\ \frac{2+m+n}{2}$$

(ii) Let m, n be positive integers. Then, $K_{3,m,n}$ has prime labeling if and only if

$$3+m \le \left| P\left(\frac{3+m+n}{2}, 3+m+n\right) \right| + 1 \text{ where } P\left(\frac{3+m+n}{2}, 3+m+n\right) \text{ denotes the set of all primes } p \text{ such that } \frac{3+m+n}{2}$$

Proof s.(i) First, consider the set of primes given by $\mathbf{X} = P\left(\frac{2+m+n}{2}, 2+m+n\right) \setminus \{\mathbf{p_1}\}$, where $\mathbf{p_1}$ is a prime. Let $\mathbf{Y} = \mathbf{P}\left(\frac{2+m+n}{2}, 2+m+n\right) \setminus \{\mathbf{p_1}\}$, where $\mathbf{p_1}$ is a prime.

 $\{1, \dots, 2 + m + n\}, Z = \{1, p_1\}$ and $Y' = Y \setminus \{X \cup Z\}$. Further, Z is relatively prime to Y' and X. So, Z and X are relatively prime to Y'. Consider set of 2 + m points labeling $\{1, \dots, 2 + m\}$. Join each vertex in Z to all vertices in X. Then, join each vertex in Z to all vertices in Y' and then each vertex in X to all vertices in Y'. The resulting graph is tripartite and it is $K_{2,m,n}$ and further it is a prime labeling of $K_{2,m,n}$.

Tele: E-mail address: athula103@yahoo.com

^{© 2019} Elixir All rights reserved

285 D.M.T.B. Dissanayake and A.A.I. Perera / Elixir Appl. Math. 131 (2019) 53284-53286

(iii) Similar proof as in part (i) can be obtained by defining $X = P\left(\frac{3+m+n}{2}, 3+m+n\right) / \{p_1, p_2\}$, where p_1, p_2 are primes, $Y = \{1, \dots, 3+m+n\}$ and $Z = \{1, p_1, p_2\}$.

Ramanujan primes are used to obtain the next result of our work. It gives a lower bound for possible prime labeling for large n. As mentioned in [1, p.10]; let $\pi(x)$ denote the number of primes less than or equal to x, then the $n^{\text{th}}Ramanujan$ prime is the least integer R_n for which $\pi(x) - \pi(\frac{x}{2}) \ge n$ holds for all $x \ge R_n$. The first five Ramanujan primes are $R_1 = 2, R_2 = 11, R_3 =$

17, $R_4 = 29$ and $R_5 = 41$. Theorem 2

(i) $K_{2,m,n}$ is prime if $n \ge R_{m+1} - (m+2)$.

(ii) $K_{3,m,n}$ is prime if $n \ge R_{m+2} - (m+3)$.

Proofs. (i) There are at least **m** primes in the interval $\left(\frac{2+m+n}{2}, 2+m+n\right]$ for

 $n \ge R_{m+1} - (m+2)$. Denote the first m of these primes by $p_1, p_2, ..., p_m$, then the sets given by $A_{2,m,n} = \{1, p_1\}, B_{2,m,n} = \{p_2, p_3, ..., p_m\}$ and $C_{2,m,n} = \{1, ..., 2 + m + n\} \setminus (A_{2,m,n} \cup B_{2,m,n})$ give a prime labeling of $K_{2,m,n}$ for $n \ge R_{m+1} - (m+2)$. (iii) Similar proof as in part (i) can be obtained by defining $A_{3,m,n} = \{1, p_1, p_2\}, B_{3,m,n} = \{p_3, p_4, ..., p_m\}$ and $C_{3,m,n} = \{1, ..., 3 + m + n\} \setminus (A_{3,m,n} \cup B_{3,m,n})$.

Results and Discussion

In this section, results are proved for $K_{2,m,n}$ when m = 2 and 3 and for $K_{3,3,n}$. Also a prime labeling of $K_{2,2,9}$ is illustrated. Corollary 1

(i) $K_{2,2,n}$ is a prime graph if n = 9 or $n \ge 13$.

(ii) $K_{2,2,n}$ is not a prime graph if $2 \le n \le 12$ excluding 9.

Proofs. (i) (By inspection) If n = 9, then $A_{2,2,9} = \{1, 7\}$, $B_{2,2,9} = \{11, 13\}$ and $C_{2,2,9} = \{2, 3, 4, 5, 6, 8, 9, 10, 12\}$ give a prime labeling of $K_{2,2,9}$. The prime graph of $K_{2,2,9}$ is given below:

Figure 1. Prime labeling of K_{2.2.9}

Since $R_3 = 17$, there are at least three primes p_1, p_2, p_3 in the interval $\left(\left| \frac{n+4}{2} \right|, n+4 \right]$ for $n \ge 13$. Hence, the sets $A_{2,2,n} =$

 $\{1, p_1\}, B_{2,2,n} = \{p_2, p_3\} \text{ and } C_{2,2,n} = \{1, \dots, n+4\} \setminus (A_{2,2,n} \cup B_{2,2,n}) \text{ give a prime labeling of } K_{2,2,n} \text{ for } n \ge 13.$

(iii) When $2 \le n \le 12$, excluding 9, we *cannot* obtain two subsets with two vertices in each subset such that the vertices of these subsets are relatively prime with labeling of vertices of the other subset.

Corollary 2

(i) $K_{2,3,n}$ is a prime graph if n = 14, 15, 16, 18, 19, 20 or $n \ge 24$.

(ii) $K_{2,3,n}$ is not a prime graph if $2 \le n \le 13$, n = 17, 21, 22, 23.

Proofs. (i) (By inspection), if n = 14, 15 or 16 then choose $A_{2,3,n} = \{1, 11\}$ and $B_{2,3,n} = \{13, 17, 19\}$. If n = 18, 19 or 20, then choose $A_{2,3,n} = \{1, 13\}$ and $B_{2,3,n} = \{17, 19, 23\}$. In each case, $C_{2,3,n} = \{1, \dots, n+5\} \setminus (A_{2,3,n} \cup B_{2,3,n})$ gives a prime labeling of $K_{2,3,n}$.

Since $R_4 = 29$, there are at least four primes p_1, p_2, p_3, p_4 in the interval $\left(\left\lfloor \frac{n+5}{2} \right\rfloor, n+5 \right]$ for $n \ge 24$. Hence, the sets

 $A_{2,3,n} = \{1, p_1\}, B_{2,3,n} = \{p_2, p_3, p_4\} \text{ and } C_{2,3,n} = \{1, \dots, n+5\} \setminus (A_{2,3,n} \cup B_{2,3,n}) \text{ give a prime labeling of } K_{2,3,n} \text{ for } n \ge 24.$ (iii) A similar proof as for Corollary 1.(ii) can be given. Corollary 3

(i) $K_{3,3,n}$ is a prime graph if n = 25, 26, 27, 31 or $n \ge 35$.

(ii) $K_{3,3,n}$ is not a prime graph if $2 \le n \le 24$, $28 \le n \le 34$ except 31.

Proofs. (i) If n = 25, 26 or 27 then choose $A_{3,3,n} = \{1, 17, 19\}$ and $B_{3,3,n} = \{23, 29, 31\}$. If n = 31, then choose $A_{3,3,n} = \{1, 19, 23\}$ and $B_{3,3,n} = \{29, 31, 37\}$. In each case, $C_{3,3,n} = \{1, \dots, n+6\} \setminus (A_{3,3,n} \cup B_{3,3,n})$ gives a prime labeling of $K_{3,3,n}$.

53285

D.M.T.B. Dissanayake and A.A.I. Perera / Elixir Appl. Math. 131 (2019) 53284-53286

Since $R_5 = 41$, there are at least five primes p_1, p_2, p_3, p_4, p_5 in the interval $\left(\left| \frac{n+6}{2} \right|, n+6 \right)$ for $n \ge 35$. Hence, the sets

 $A_{3,3,n} = \{1, p_1, p_2\}, B_{2,3,n} = \{p_3, p_4, p_5\}$ and $C_{2,3,n} = \{1, \dots, n+6\} \setminus (A_{3,3,n} \cup B_{3,3,n})$ give a prime labeling of $K_{3,3,n}$ for $n \ge 35$.

(iii) A similar proof as for Corollary 1.(ii) can be given.

The following table gives the prime labeling of tripartite graphs for some m.

Table 1: Prime labeling of $K_{2,m,n}$ and $K_{3,m,n}$ for some values of m and n.

K _{2,m,n}	K _{3,m,n}	\boldsymbol{n} values for which prime graphs can be obtained
K _{2,1,n}		$n = 4, 5, 6$ and $n \ge 8$
K _{2,2,n}	K _{3,1,n}	$n = 9$ and $n \ge 13$
K _{2,3,n}	K _{3,2,n}	<i>n</i> = 14, 15, 16, 18, 19, 20 and
		$n \ge 24$
K _{2,4,n}	K _{3,3,n}	$n = 25, 26, 27, 31$ and $n \ge 35$
K _{2,5,n}	K _{3,4,n}	$n = 36, 37, 38$ and $n \ge 40$
K _{2,6,n}	K _{3,5,n}	$n = 45, 46, 47, 48, 49$ and $n \ge 51$
K _{2,7,n}	K _{3,6,n}	$n = 52$ and $n \ge 58$
K _{2,8,n}	K _{3,7,n}	$n \ge 61$
K _{2,9,n}	K _{3,8,n}	$n = 62, 68, 69, 70, 72, 73, 74, 78, 79, 80, 81, 82$ and $n \ge 86$
K _{2,10,n}	K _{3,9,n}	$n \ge 89$
K _{2.11.n}	K _{3.10.n}	$n = 90, 91, 92$ and $n \ge 94$

Conclusion

In our work, it has been shown that prime labeling of complete tripartite graphs of the form $K_{2,m,n}$ and $K_{3,m,n}$ exist for some values of m and n where $m, n \in \mathbb{Z}^+$. Those are given in the above table. Also, some non-existing results have been proved.

For a general complete tripartite graph $K_{l,m,n}$; l, m, n can be permuted in 3! = 6 ways. Moving partite sets with l, m and n number of vertices six graphs can be obtained and all are isomorphic. Hence, permuting 2, m, n in $K_{2,m,n}$ and permuting 3, m, n in $K_{3,m,n}$ large number of prime graphs can be constructed.

This work can be further generalized for complete bipartite graphs of the form $K_{l,m,n}$ where $l, m, n \in \mathbb{Z}^+$.

References

[1] Berliner, A. H., Dean, N., Hook, J., Marr, A., Mbirika, A. and McBee, C. D., (2016). Coprime and prime labeling of graphs, Journal of Integer Sequences, 19(2).

[2] Dissanayake, D.M.T.B., Abeysekara, R.A.S.T., Dhananjaya, K.D.E., Perera, A.A.I., and Ranasinghe, P.G.R.S., (2019). Prime Labeling of Complete Tripartite Graphs of the Form $K_{1,m,n}$, Elixir International Journal, 130, pp. 53092-53094.

[3] Gallian, J. A., (2009). A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 16(6), pp. 1-219.

[4] Gross, J. L., Yellen, J., and Zhang, P., (2013). Handbook of Graph Theory, Chapman and Hall/CRC.

[5] Tout, R., Dabbouchy, A. N., Howalla, K. (1982). Prime labeling of graphs, national Academy of Science Letters-India, 5(11), pp. 365-368.

53286